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TL;DR: We build a (non-neural) probabilistic syntactic model and find striking similarity
between its computation graph and the transformer!

Why it matters:

Syntactic structures are no longer deemed essentia
shows that syntactic structures may still have an im
could:

by many in modern neural NLP. Our work
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* benefit the analysis and extension of transformers
* inspire future research of linguistically more principled neural models

* bridge the gap between traditional statistical NLP (incl. decades of syntax research) and
modern neural NLP
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representing property of

word i in the input sentence After a few iterations, Q(Z;) can be seen as a contextual

representation of word i.

Unary factor: compatibility
of Z; and word i

The computation is fully differentiable and can be seen as a
graph neural network. Learning can be done by back-
propagation (e.g., using a MLM objective).

Ternary factor: compatibility between Z; and Z; it
word j is the dependency head of word i (H; = j)

Probabilistic Transformer

Similarities to Transformers
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Experiment Results

Task Dataset Metric Transformer Probabilistic Transformer

¢ MLM: Masked Lap guage MIM BI;E?I)P Perplexity 15081. 4931:_:_01. 5480 1622?; 8168:_:_01.4500
Modeling (lower is better) o o

: PTB 96.44 + 0.04 96.29 == 0.03
* POS: Part-of-Speech Tagging POS UD Accuracy 01.17 + 0.11 00.96 + 0.10
* NER: Named Entity Recognition NER CoNLL-2003 F1 74.02 £1.11 75.47 £0.35
e (CLS: Class|f|cat|on SST-2 82.51 = 0.26 82.04 + 0.88
CLS SST-5 Accuracy 40.13 + 1.09 42.77 + 1.18
Probabilistic transtormers have Syntactic Test COGS Sentence-level Accuracy  82.05 £ 2.18 84.60 = 2.06

competitive performance with

transformers.
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