

Nested Named Entity Recognition as Latent Lexicalized Constituency Parsing

Chao Lou, Songlin Yang, Kewei Tu

School of Information Science and Technology, ShanghaiTech University

Task: Nested NER

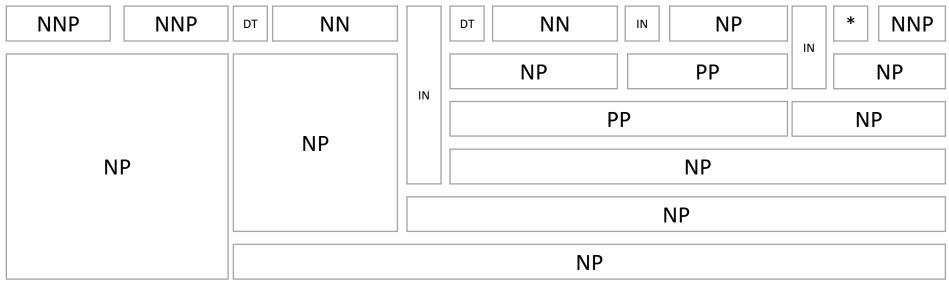
Flat NER

• Reginold Bickford, a researcher at the university of California at San Diego

Nested NER

Previous work: PO-TreeCRF [Fu et al., 2021]

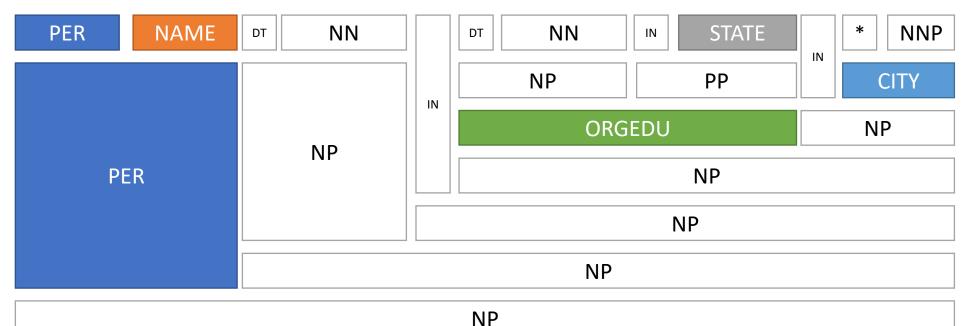
Constituency parsing



|--|

Previous work: PO-TreeCRF [Fu et al., 2021]

Nested NER ≒ Constituency parsing



Previous work: PO-TreeCRF [Fu et al., 2021]

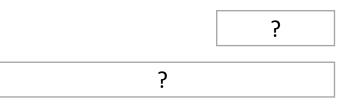
Nested NER

• Reginold Bickford, a researcher at the university of California at San Diego

Formulation: constituency parsing with **partially observed trees**

We Step Further: Lexicalization

Entity heads are important clues for entity recognition.



We Step Further: Lexicalization

Entity heads are important clues for entity recognition.

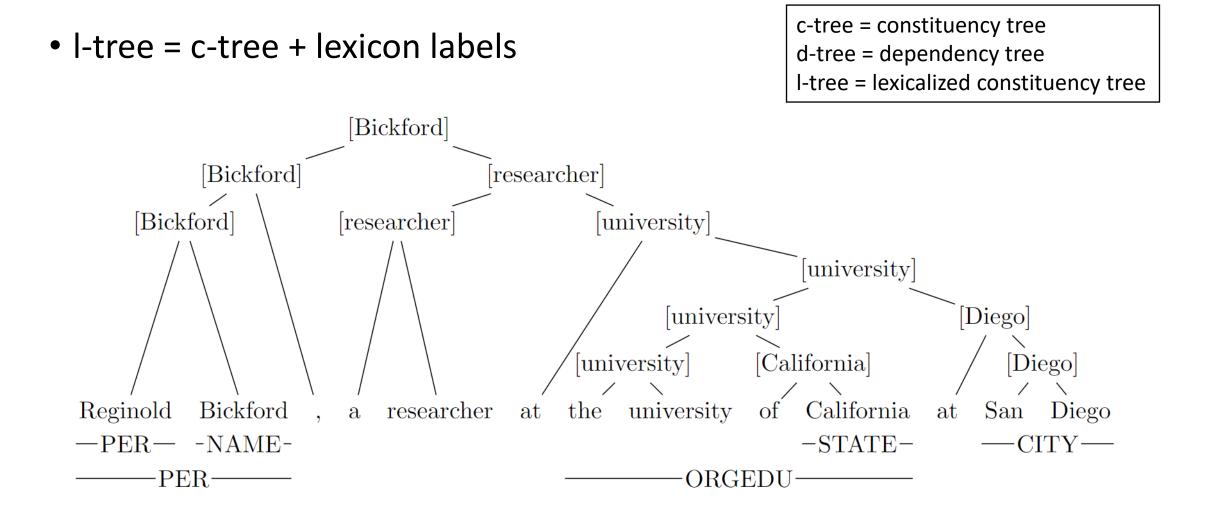
• Reginold Bickford, a researcher at the university of California at San Diego

STATE

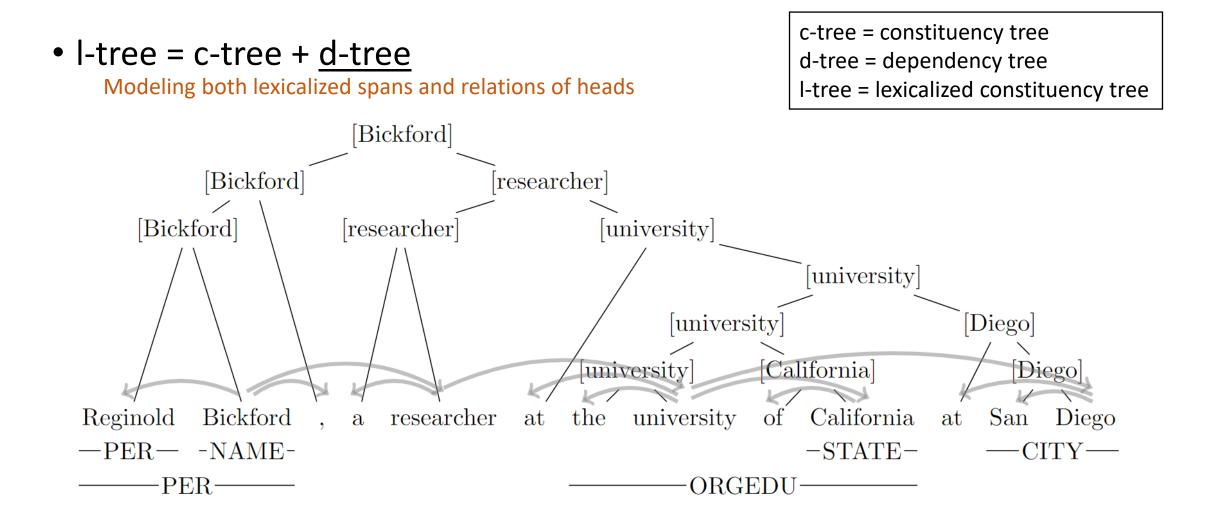
Overview

- Formulate nested NER as latent lexicalized constituency parsing
- A two-stage parsing strategy
 - Stage 1: identifying entity spans through parsing
 - Stage 2: labeling entity types
- Training loss consists of
 - a structural tree loss computed by the masked inside algorithm
 - a head regularization loss
 - a head-aware labeling loss

Our formulation: lexicalized c-parsing

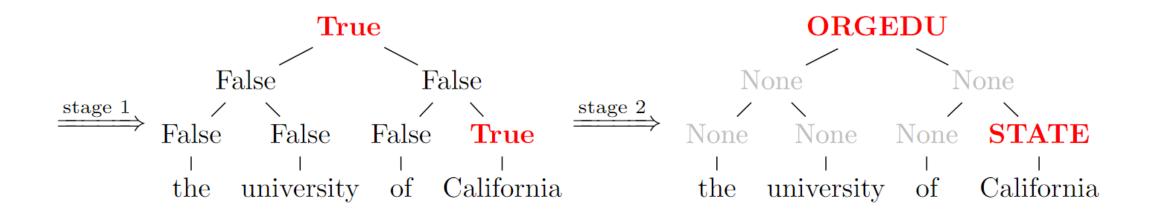


Our formulation: lexicalized c-parsing



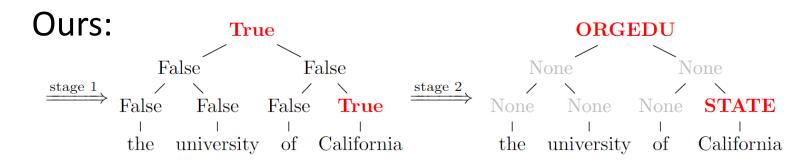
Our Parsing Strategy

- A modified two-stage strategy
- Stage 1: predict parse trees with True/False labels
- Stage 2: predict entity labels for constituents with label True

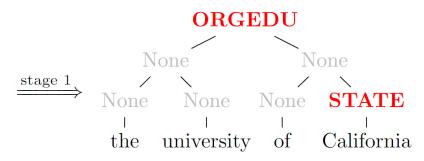


Parsing Strategy Comparison

Ours vs. one-stage strategy



One-stage:

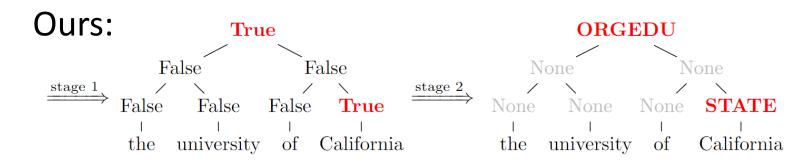


Pros:

- Support multi-label classification
- Decomposed representation for structure prediction and label prediction
- More parameters

Parsing Strategy Comparison

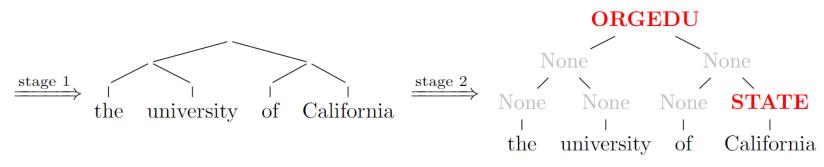
• Ours vs. previous two-stage strategy



Pros:

- Richer supervision at stage 1
- Avoid label imbalance at stage 2

Previous two-stage:



Training Loss

Training loss =

 Structural tree loss
 + head regularization
 + head-aware labeling loss

L_{tree} L_{reg} L_{label}

Structural tree loss L_{tree}

• Score of a l-tree is the sum of scores of spans and arcs.

$$s(l) = s(c) + s(d)$$

• Structural tree loss

$$L_{tree} = \log Z - \log \sum_{l \in \mathcal{T}} \exp(s(l))$$

- ${\mathcal T}$ is the set of trees containing observed entities
- *Z* is the partition function
- Use the masked inside algorithm for efficient computation of Σ_T [Fu et al., 2021]

Head Regularization Loss L_{reg}

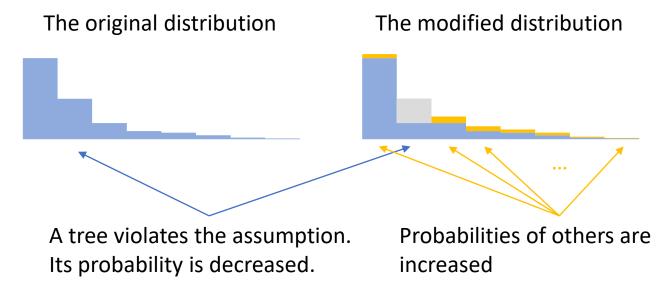
Entity heads are important clues for entity recognition.

• Reginold Bickford, a researcher at the university of California at San Diego

We prefer different heads for different entities.

Head Regularization Loss L_{reg}

- Teach model the assumption that **different entities have distinct head words**.
- Decrease the score s(l) if l violates the assumption.



• Minimize the KL divergence of the two distributions.

Head-aware Labeling Loss L_{label}

- Predict labels for each span (i, j) with head k
- But we don't know the gold head
- Optimize the expected loss instead

$$L_{label} = \sum_{(i,j,y)\in N} \mathbb{E}_k L(y, \hat{y}_{ijk})$$

- *N* is the set of gold entities
- *L* is some loss function (e.g., cross entropy)
- Side effect: also improve the accuracy of structure prediction

Datasets

	ACE2004		ACE2005			GENIA			NNE			
	train	dev	test	train	dev	test	train	dev	test	train	dev	test
# sentences	6198	742	809	7285	968	1058	15022	1669	1855	43457	1989	3762
- nested	2718	294	388	2797	352	339	3222	328	448	28606	1292	2489
# entities	22195	2514	3034	24827	3234	3041	47006	4461	5596	248136	10463	21196
- nested	10157	1092	1417	9946	1191	1179	8382	818	1212	206618	8487	17670
 single-word 	11527	1363	1553	13988	1852	1706	12933	1009	1392	166183	7291	14397
- multi-type	3	1	1	9	3	2	21	5	5	16769	792	1583

Table 9: Statistics of ACE2004, ACE2005, GENIA and NNE. An entity is considered nested if contains any entity or is contained by any entity. A sentence is considered nested if contains any nested entity.

• NNE contains lots of multi-type entities

Results

	ACE2004			ACE2005			GENIA		
Model	Р	R	F1	Р	R	F1	Р	R	F1
Comparable	1			1			1		
SH	-	-	-	83.30	84.69	83.99	77.46	76.65	77.05
Pyramid-Basic	86.08	86.48	86.28	83.95	85.39	84.66	78.45	78.94	79.19
W(max)	86.27	85.09	85.68	85.28	84.15	84.71	79.20	78.16	78.67
PO-TreeCRFs [†]	87.62	87.57	87.60	83.34	85.67	84.49	79.10	76.53	77.80
Seq2set [†]	87.05	86.26	86.65	83.92	84.75	84.33	78.33	76.66	77.48
Locate&Label [†]	87.27	86.61	86.94	86.02	85.62	85.82	76.80	79.02	77.89
BARTNER	87.27	86.41	86.84	83.16	86.38	84.74	78.57	79.3	78.93
Ours	87.39	88.40	87.90	85.97	87.87	86.91	78.39	78.50	78.44
For reference				1					
SH [F]	-	-	-	83.83	84.87	84.34	77.81	76.94	77.36
Pyramid-Full [A]	87.71	87.78	87.74	85.30	87.40	86.34	-	-	-
PO-TreeCRFs [D]	86.7	86.5	86.6	84.5	86.4	85.4	78.2	78.2	78.2
Seq2set [C,P,D]	88.46	86.10	87.26	87.48	86.63	87.05	82.31	78.66	80.44
Locate&Label[C,P,D]	87.44	87.38	87.41	86.09	87.27	86.67	80.19	80.89	80.54

Model		NNE	
Woder	Р	R	F1
Pyramid-Basic	93.97	94.79	94.37
Ours	94.32	94.97	94.64

Table 2: Results on NNE.

Table 1: Results on ACE2004, ACE2005 and GENIA. SH: Shibuya and Hovy (2020); Pyramid-Basic/Full: Wang et al. (2020)⁵; W(max/logsumexp): Wang et al. (2021)⁶; PO-TreeCRFs: Fu et al. (2020); Seq2set: Tan et al. (2021) ; Locate&Label: Shen et al. (2021); BARTNER: Yan et al. (2021). Labels in square brackets stand for the reasons of the results being incomparable to ours. F: +Flair; A: +ALBERT, C: context sentences, P: POS tags, D: different data preprocessing. † denotes that we rerun their open-sourced codes using our data.

Analysis of structures

Model	Р	R	F1
Unstructured(1-stage)	83.76	87.17	85.43
Unstructured(2-stage)	84.23	86.62	85.41
1-stage	84.08	87.52	85.76
1-stage + LEX	84.26	87.83	86.01
2-stage	84.68	87.33	85.99
2-stage + LEX	84.60	87.80	86.17
2-stage (0-1) + LEX	84.83	87.87	86.32
- parsing	84.26	87.40	85.83
+ head regularization	85.84	87.30	86.56
+ head-aware labeling	85.50	87.77	86.62
+ both (our final model)	85.97	87.87	86.91

Table 3: Ablation studies on the ACE2005 test set. LEX represents lexicalized structures.

Conclusion

- We formulate nested NER as lexicalized constituency parsing, motivated by the close relationship between entity heads and entity recognition.
- We propose a modified two-stage parsing strategy, a head regularization loss and a head-aware labeling loss to improve performance.
- The experiments on four benchmarks validate the effectiveness and efficiency of our proposed method.

Thanks!

Nested Named Entity Recognition as Latent Lexicalized Constituency Parsing