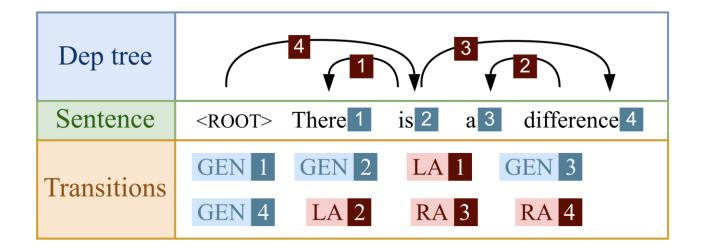
Dependency Transformer Grammars:

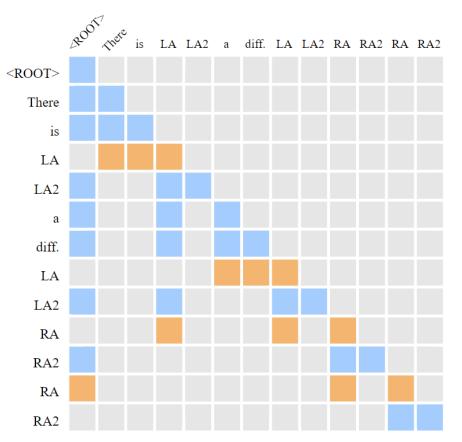

Integrating Dependency Structures into Transformer Language Models

Yida Zhao, Chao Lou, Kewei Tu School of Information Science and Technology, ShanghaiTech University

Dependency Transformer Grammars (DTGs)

- Syntactic language models that jointly model parse trees and strings
 - Autoregressively generate a transition/action sequence
- DTGs model transition sequences of transition-based dependency parsers
 - Use Arc-standard transition systems
 - Replace each SHIFT in Arc-standard with generating a new token

arc-standard Shift $(\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)$ LArc $(\sigma | i | j, \beta, A) \Rightarrow (\sigma | j, \beta, A \cup \{(j \rightarrow i)\})$ RArc $(\sigma | i | j, \beta, A) \Rightarrow (\sigma | i, \beta, A \cup \{(i \rightarrow j)\})$

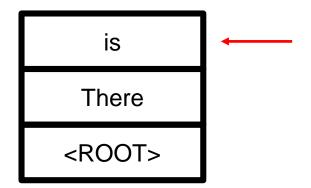

- Design two constrained attention patterns to simulate the stack in the parsing system
 - STACK attention for gathering information in the stack and predicting a new transition
 - COMPOSE attention for composing the information from a head-dependent pair and replace them with a composition in the stack

Attention Masks

- Construct attention masks for each pattern that force the stack information gathering and head-dependent representation learning
 - Duplicate the arc transition to perform both

COMPOSE and **STACK**

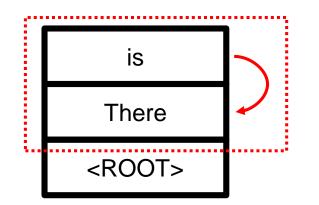
i	Input	Attn. Mask	Prediction
0	<root></root>	STACK	GEN(There)
1	There	STACK	GEN(is)
2	is	STACK	LEFTARC
3	LEFTARC + is	COMPOSE	-
4	LEFTARC2 + is	STACK	GEN(a)
5	a	STACK	GEN(difference)
6	difference	STACK	LEFTARC
7	LEFTARC + difference	COMPOSE	-
8	LEFTARC2 + difference	STACK	RIGHTARC
9	RIGHTARC + is	COMPOSE	-
10	RIGHTARC2 + is	STACK	RIGHTARC
11	RIGHTARC + <root></root>	COMPOSE	-
12	RIGHTARC2 + <root></root>	STACK	<end></end>

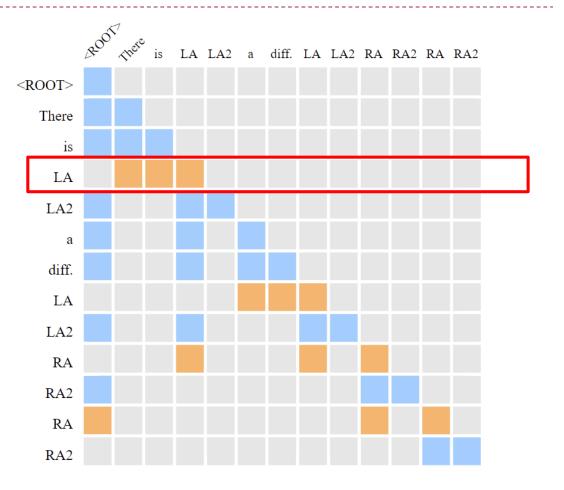


STACK attention

.

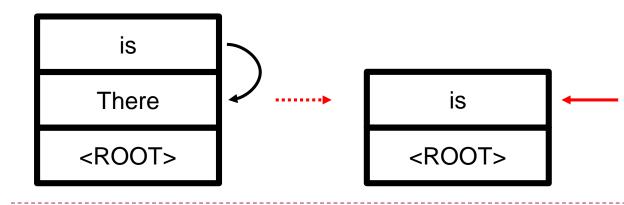
	i	Input	Attn. Mask	Prediction
	0	<root></root>	STACK	GEN(There)
	1	There	STACK	GEN(is)
	2	is	STACK	LEFTARC
	3	LEFTARC + is	COMPOSE	-
	4	LEFTARC2 + is	STACK	GEN(a)
	5	a	STACK	GEN(difference)
	6	difference	STACK	LEFTARC
	7	LEFTARC + difference	COMPOSE	-
	8	LEFTARC2 + difference	STACK	RIGHTARC
	9	RIGHTARC + is	COMPOSE	-
1	10	RIGHTARC2 + is	STACK	RIGHTARC
1	11	RIGHTARC + <root></root>	COMPOSE	-
1	12	RIGHTARC2 + <root></root>	STACK	<end></end>

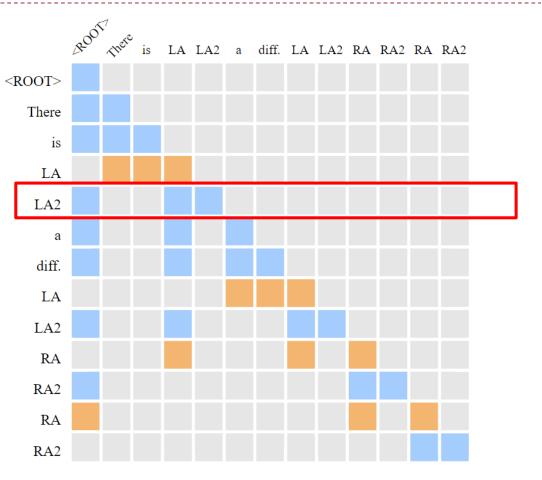




COMPOSE attention

i	Input	Attn. Mask	Prediction
0	<root></root>	STACK	GEN(There)
1	There	STACK	GEN(is)
2	is	STACK	LEFTARC
3	LEFTARC + is	COMPOSE	-
4	LEFTARC2 + is	STACK	GEN(a)
5	a	STACK	GEN(difference)
6	difference	STACK	LEFTARC
7	LEFTARC + difference	COMPOSE	-
8	LEFTARC2 + difference	STACK	RIGHTARC
9	RIGHTARC + is	COMPOSE	-
10	RIGHTARC2 + is	STACK	RIGHTARC
11	RIGHTARC + <root></root>	COMPOSE	-
12	RIGHTARC2 + <root></root>	STACK	<end></end>





.

STACK attention

ion
e)
rence)
2
2

Relative Positional Encoding

Transformer-XL based positional encoding

• Using the relative depth in the stack for **STACK** attention.

$$R_{ij} = d(i) - d(j)$$

Using 0 and -1 for head and dependent for COMPOSE attention.

$$R_{ij} \begin{cases} 0 \ if \ \mathbf{j} \ is \ the \ head \\ -1 \ if \ \mathbf{j} \ is \ the \ dependent \end{cases}$$

Each LA and RA is represented by a combination of the special LEFTARC/ RIGHTARC token and the head token

E(LA/RA) = E(LEFTARC/RIGHTARC) + E(head token)

Evaluate sentence-level perplexity and syntactic generalization

- Compare DTGs with Transformer LM baselines and constituency-based syntactic LMs
- Compare Arc-standard system with other dependency transition systems for syntactic LM supervision
- Better syntactic generalization and comparable perplexity !

Model	PPL (\downarrow)	BLiMP (†)	SG (↑)			
Models without syntactic inductive bias						
TXL (tokens)	14.8	75.3	76.6			
Constituency-based models						
PLM	29.8^{\diamondsuit}	75.1	80.2			
TG	18.4 [•]	73.5^{ullet}	82.5			
Pushdown	19.9^{\diamond}	75.6	82.3			
Dependency-based models						
TXL (trans)	14.4	77.3	81.1			
DTG-eager	15.5	75.2	-			
DTG-swift	15.0	76.2	-			
DTG	14.9	76.1	83.9			