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• Low-rank parameterization enables a dramatic increase in the 

numbers of nonterminals(NT) preterminals(PT), from just over 30

and 60 to upwards to 5,000 and 10,000 respectively

• The Sentence-F1 score in unsupervised parsing sees an increase 

from 55.2 to 64.1, a significant improvement attributable to 

scaling
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Advantages Brought by Scaling

The Achilles' Heel of Low-rank PCFGs

• Despite benefiting from scaling in unsupervised parsing, low-rank 

PCFGs perform poorly as a language model and underperform 

similarly-sized HMMs

• On the Penn Treebanck,  PCFGs scaled via low-rank 

parameterization with thousands of states achieves ≅ 170

• However, it lags behind a similarly-sized HMM which obtains ≅

130 perplexity, even though HMMs are subclass of PCFGs.

Low-Rank PCFGs

• The previous approach to scaling HMMs and PCFGs to thousands of 
nontermals is parameterizing the  rule probability tensor                                       
to be low-rank

• Low-rank PCFGs can be viewed as introducing a new latent variable, namely a 
“rank variable” 𝑅, where 𝑼,𝑽,𝑾 are tensor/matrix representations of rule 
probabilities.

• In fact, a low-rank PCFG can be parameterized as a PCFG with independent 
left/right productions by marginalizing nonterminal variables and viewing the 
rank variables as new nonterminal variables 

• As such, low-rank PCFGs  parameterize 𝑳, 𝑹 in a more restrictive manner: 𝑳 =
𝑽𝑼𝑻, 𝑹 = 𝑾𝑼𝑻. We speculate that the shared 𝑼𝑻 would restrict the 
expressiveness of low-rank PCFGs and thus hinder optimization, which 
motivates our simple PCFGs.

In simple PCFGs, we simplify all these things.

• We decompose 𝜋𝐴→𝐵𝐶 into 𝝅𝑩←𝑨 ⋅ 𝝅𝑨→𝑪, effectively assuming 

that left and right children are generated independently

• In simplePCFG, we parameterize 𝑳, 𝑹 directly instead of through 

the shared 𝑼𝑻, which in fact contributes to building a more 

flexible parameterization
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To facilitate scaling of simple PCFGs, we introduce FlashInside, a hardware-

efficient IO-aware implementation of the inside algorithm. It consists of four 

techniques:

Span-level Parallelism, The log-einsum-exp trick, Kernel Fusion and 

Recomputation

FlashInside: A Hardware-efficient Inside Algorithm
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Span-Level Parallelism

Log-einsum-Trick for SimplePCFG
𝒂, 𝒃 is used for computing inside probability 
and 𝑳, 𝑹 are left and right production rules

Speed & Memory Comparison

Language Modeling

• Simple Neural PCFG (SN-PCFG) 

outperforms previous low-rank 

PCFG with similar size

• SN-PCFG successfully exceeds 

similarly-sized HMMs

Unsupervised Parsing

• SC-PCFG is simple compound 

neural PCFG

• SN-PCFG or SC-PCFG outperforms 

previous PCFG models on un-

supervised parsing benchmarks 

across different languages

• Simple PCFG vs. Neural PCFG: 

Despite the better scalability of 

simple PCFGs, we find that under 

the same number of NT (i.e. 128), 

SN-PCFG expectedly under-

performs N-PCFG


