SimplePCFG: Simple Hardware-Efficient PCFGs with Independent Left
and Right Productions

Wei Liu*, Songlin Yang*, Yoon Kim, Kewei Tu

School of Information Science and Technology, ShanghaiTech University
MIT CSAIL

Low-Rank PCFGs

* The previous approach to scaling HMMs and PCFGs to thousands of
nontermals is parameterizing the rule probability tensor T ¢ RV IxIN[x V]
to be low-rank

Advantages Brought by Scaling

* Low-rank parameterization enables a dramatic increase in the
numbers of nonterminals(NT) preterminals(PT), from just over 30
and 60 to upwards to 5,000 and 10,000 respectively

* The Sentence-F1 score in unsupervised parsing sees an increase . . _ .
* Low-rank PCFGs can be viewed as introducing a new latent variable, namely a

“rank variable” R, where U, V, W are tensor/matrix representations of rule
probabilities.

from 55.2 to 64.1, a significant improvement attributable to
scaling

The Achilles' Heel of Low-rank PCFGs

* In fact, a low-rank PCFG can be parameterized as a PCFG with independent
left/right productions by marginalizing nonterminal variables and viewing the
rank variables as new nonterminal variables

* Despite benefiting from scaling in unsupervised parsing, low-rank
PCFGs perform poorly as a language model and underperform

similarly-sized HMMs
* As such, low-rank PCFGs parameterize L, R in a more restrictive manner: L =

VUT,R = WUT. We speculate that the shared UT would restrict the
expressiveness of low-rank PCFGs and thus hinder optimization, which
motivates our simple PCFGs.

* On the Penn Treebanck, PCFGs scaled via low-rank
parameterization with thousands of states achieves = 170

* However, it lags behind a similarly-sized HMM which obtains =
130 perplexity, even though HMMs are subclass of PCFGs.

SimplePCFG

In simple PCFGs, we simplify all these things.

Flashinside: A Hardware-efficient Inside Algorithm

To facilitate scaling of simple PCFGs, we introduce Flashinside, a hardware-

* We decompose T4, INtO Tp_ 4 * s, effectively assumin
A—-BC B<A A-C
that

efficient |0-aware implementation of the inside algorithm. It consists of four

eft and right children are generated independently techniques:

Span-level Parallelism, The log-einsum-exp trick, Kernel Fusion and

* In simplePCFG, we parameterize L, R directly instead of through Recomputation

the shared UT, which in fact contributes to building a more

ila'j = :BT + lﬂg (L exp(nij — iL'T))

flexible parameterization

4

O E© O

bz’j — :IIT + lﬂg (Re:{p(og-j — :BT))

Log-einsum-Trick for SimplePCFG
a, b is used for computing inside probability
and L, R are left and right production rules

O O
O O
o O O

arallelism

R

evel

—

Span-

Speed & Memory Comparison

Algorithm IN| | Speed Memory
sUdE 5 log-emnsum-exp 3512 20 4.8x 3x
Simple Neural PCFG (SN-PCFG) Model NT ppl (}) Flashinside 512 20 9.5x 1x
outperforms previous low-rank NHMM 4096 147 log-einsum-exp 8192 20 Ix 2X
BCEG with similar sive LHMM 16384 131.8 Flashlnside 8192 20 Hx 1x
Rank HMM 16384 127.0 log-sum-exp 512 40 1x 50x
Rank HMM 32768 1264 log-einsum-exp 512 40 16x 3x
SN-PCFG successfully exceeds Rank PCFGT 4096 17451114 FlashInside 512 40 A4x 1%
‘milarlv-sized HMM Rank PCFGT 8192 161.244. — -
similarly-size S SNPCFG 4006 1254101 log einsum-exp 8192 40 1x 2.4x
Flashlnside 8192 40 39x 1x

SN-PCFG 8102 119.0.:

Unsupervised Parsing

* SC-PCFG is simple compound Model NT S-F1(1) ppl (4)
N-PCFG 30 50.8 252.6 Model NT Chinese French German
neural PCFG C-PCFG 30 552 - ode
TN-PCFG 500 57.7 210.0 S-F1(1) ppl(l) S-F1(1) ppl(]) S-F1(1) ppl(])
* SN-PCFG or SC-PCFG outperforms Eant EEEET iggg ggi iggg Left-Branching 7.2 - 5.7 - 10.0
] an el il Right-Branching 25.5 26.4 14.07
revious PCFG models on un- Rank PCFG 8192 61liso 17124117
P N-PCEG! 128 567137 181.1.1cs | Random Tr.'e_ee 15.2 16.2 13.9
supervised parsing benchmarks SN-PCFG 128 511441 231.7:181 kim-2022-revisiting - 41.9 47.3
. SN-PCFG 4096 65.1.21 132.5:49 li-lu-2023-contextual - - 48.7 40.8
across different languages SN-PCFG 8192 629425 134.6:101 N-PCEG 30 263.,0 15010 12311
* Simple PCFG vs. Neural PCFG: SC.pere I 00 C-PCFG 30 387465 45.0+1.1 43.541.
. . PRPN - 374 TN-PCFG 250 39.245.0 39.144.1 471417
Despite the better scalability of ON 47.7 Rank PCFG 4096 31.00ig9 409.41205 312493 355.8:+137 35.6401 21534571
. . DIGRAHPE“ constrain 61.2 Rank PCFG 8192 32.418.2 3?2.621:31.4 32.911:15.5 332.2:1:55.3 3B.gj:9.ﬁ 19{}.5:1:553
simple PCFGs, we find that under iﬁﬁfﬂinw - o SN-PCFG 4096 39.9i63 32834621 38.0131 379745, 467449 157.8.656
the same number Of NT (i.e. 128)’ StructFormer 54 0 SN-PCFG 8192 41.2435 288.21117 433109 259.9i702 46945, 159.5477.
Fast-R2D2 57.2 SC-PCFG 512 38.447.4 - 47.9410 - A47.7+1.0 -
SN-PCFG expectedly under- Right-Branching 39.5 SC-PCEG 2048 42.9., 49.9., - 49.1.4 0

performs N-PCFG

Oracle Trees

84.3

