
SimplePCFG: Simple Hardware-Efficient PCFGs with Independent Left
and Right Productions

Wei Liu*, Songlin Yang*, Yoon Kim, Kewei Tu
School of Information Science and Technology, ShanghaiTech University

MIT CSAIL

• Low-rank parameterization enables a dramatic increase in the

numbers of nonterminals(NT) preterminals(PT), from just over 30

and 60 to upwards to 5,000 and 10,000 respectively

• The Sentence-F1 score in unsupervised parsing sees an increase

from 55.2 to 64.1, a significant improvement attributable to

scaling

SimplePCFG: Simple Hardware-Efficient PCFGs with Independent Left and Right Productions
SimplePCFG: Simple Hardware-Efficient PCFGs with Independent Left and Right Productions

Advantages Brought by Scaling

The Achilles' Heel of Low-rank PCFGs

• Despite benefiting from scaling in unsupervised parsing, low-rank

PCFGs perform poorly as a language model and underperform

similarly-sized HMMs

• On the Penn Treebanck, PCFGs scaled via low-rank

parameterization with thousands of states achieves ≅ 170

• However, it lags behind a similarly-sized HMM which obtains ≅

130 perplexity, even though HMMs are subclass of PCFGs.

Low-Rank PCFGs

• The previous approach to scaling HMMs and PCFGs to thousands of
nontermals is parameterizing the rule probability tensor
to be low-rank

• Low-rank PCFGs can be viewed as introducing a new latent variable, namely a
“rank variable” 𝑅, where 𝑼,𝑽,𝑾 are tensor/matrix representations of rule
probabilities.

• In fact, a low-rank PCFG can be parameterized as a PCFG with independent
left/right productions by marginalizing nonterminal variables and viewing the
rank variables as new nonterminal variables

• As such, low-rank PCFGs parameterize 𝑳, 𝑹 in a more restrictive manner: 𝑳 =
𝑽𝑼𝑻, 𝑹 = 𝑾𝑼𝑻. We speculate that the shared 𝑼𝑻 would restrict the
expressiveness of low-rank PCFGs and thus hinder optimization, which
motivates our simple PCFGs.

In simple PCFGs, we simplify all these things.

• We decompose 𝜋𝐴→𝐵𝐶 into 𝝅𝑩←𝑨 ⋅ 𝝅𝑨→𝑪, effectively assuming

that left and right children are generated independently

• In simplePCFG, we parameterize 𝑳, 𝑹 directly instead of through

the shared 𝑼𝑻, which in fact contributes to building a more

flexible parameterization

SimplePCFG

A

B C B C R2

R

A

R3

R1

T
U

V W

VUT

(a) (b) (c)

WUT

To facilitate scaling of simple PCFGs, we introduce FlashInside, a hardware-

efficient IO-aware implementation of the inside algorithm. It consists of four

techniques:

Span-level Parallelism, The log-einsum-exp trick, Kernel Fusion and

Recomputation

FlashInside: A Hardware-efficient Inside Algorithm

?

?

?

Span-Level Parallelism

Log-einsum-Trick for SimplePCFG
𝒂, 𝒃 is used for computing inside probability
and 𝑳, 𝑹 are left and right production rules

Speed & Memory Comparison

Language Modeling

• Simple Neural PCFG (SN-PCFG)

outperforms previous low-rank

PCFG with similar size

• SN-PCFG successfully exceeds

similarly-sized HMMs

Unsupervised Parsing

• SC-PCFG is simple compound

neural PCFG

• SN-PCFG or SC-PCFG outperforms

previous PCFG models on un-

supervised parsing benchmarks

across different languages

• Simple PCFG vs. Neural PCFG:

Despite the better scalability of

simple PCFGs, we find that under

the same number of NT (i.e. 128),

SN-PCFG expectedly under-

performs N-PCFG

