SimplePCFG: Simple Hardware-Efficient PCFGs with Independent Left

and Right Productions

Wei Liu*, Songlin Yang*, Yoon Kim, Kewei Tu School of Information Science and Technology, ShanghaiTech University MIT CSAIL

- Low-rank parameterization enables a dramatic increase in the numbers of nonterminals(NT) preterminals(PT), from just over **30** and 60 to upwards to 5,000 and 10,000 respectively
- The Sentence-F1 score in unsupervised parsing sees an increase from **55.2** to **64.1**, a significant improvement attributable to scaling

The Achilles' Heel of Low-rank PCFGs

Despite benefiting from scaling in unsupervised parsing, low-rank PCFGs perform poorly as a language model and underperform similarly-sized HMMs

Low-Rank PCFGs

- The previous approach to scaling HMMs and PCFGs to thousands of nontermals is parameterizing the rule probability tensor $\mathbf{T} \in \mathbb{R}^{|\mathcal{N}| \times |\mathcal{N}| \times |\mathcal{N}|}$ to be low-rank
- Low-rank PCFGs can be viewed as introducing a new latent variable, namely a "rank variable" R, where U, V, W are tensor/matrix representations of rule probabilities.
- In fact, a low-rank PCFG can be parameterized as a PCFG with independent

- On the Penn Treebanck, PCFGs scaled via low-rank parameterization with thousands of states achieves \cong **170**
- However, it lags behind a similarly-sized HMM which obtains \cong **130** perplexity, even though **HMMs are subclass of PCFGs**.

SimplePCFG

In simple PCFGs, we simplify all these things.

- We decompose $\pi_{A \to BC}$ into $\pi_{B \leftarrow A} \cdot \pi_{A \to C}$, effectively assuming that left and right children are generated independently
- In simplePCFG, we parameterize *L*, *R* directly instead of through the shared U^T , which in fact contributes to building a more flexible parameterization

left/right productions by marginalizing nonterminal variables and viewing the rank variables as new nonterminal variables

• As such, low-rank PCFGs parameterize L, R in a more restrictive manner: L = VU^T , $R = WU^T$. We speculate that the shared U^T would restrict the expressiveness of low-rank PCFGs and thus hinder optimization, which motivates our simple PCFGs.

FlashInside: A Hardware-efficient Inside Algorithm

To facilitate scaling of simple PCFGs, we introduce FlashInside, a hardwareefficient IO-aware implementation of the inside algorithm. It consists of four techniques:

Span-level Parallelism, The log-einsum-exp trick, Kernel Fusion and

Recomputation

$$oldsymbol{a}_{ij} = oldsymbol{x}^\dagger + \log\left(\mathbf{L}\exp(oldsymbol{o}_{ij}-oldsymbol{x}^\dagger)
ight) \ oldsymbol{b}_{ij} = oldsymbol{x}^\dagger + \log\left(\mathbf{R}\exp(oldsymbol{o}_{ij}-oldsymbol{x}^\dagger)
ight)$$

- Simple Neural PCFG (SN-PCFG) outperforms previous low-rank PCFG with similar size
- SN-PCFG successfully **exceeds** similarly-sized HMMs

Model	NT	ppl (↓)	
NHMM	4096	147	
LHMM	16384	131.8	
Rank HMM	16384	127.0	
Rank HMM	32768	126.4	
Rank PCFG [†]	4096	$174.5_{\pm11.1}$	
$Rank\ PCFG^\dagger$	8192	$161.2_{\pm 8.9}$	
SN-PCFG	4096	$125.4_{\pm 4.1}$	
SN-PCFG	8192	$\textbf{119.0}_{\pm 5.3}$	

Span-Level Parallelism

Log-einsum-Trick for SimplePCFG *a*, *b* is used for computing inside probability and *L*, *R* are left and right production rules

Speed & Memory Comparison

Algorithm	$ \mathcal{N} $	l	Speed	Memory
log-sum-exp	512	20	1x	100x
log-einsum-exp	512	20	4.8x	3x
FlashInside	512	20	9.5x	1x
log-einsum-exp	8192	20	1x	2x
FlashInside	8192	20	6x	1x
log-sum-exp	512	40	1x	50x
log-einsum-exp	512	40	16x	3x
FlashInside	512	40	44x	1x
log-einsum-exp	8192	40	1x	2.4x
FlashInside	8192	40	39x	1x

Unsupervised Parsing

- SC-PCFG is simple compound neural PCFG
- SN-PCFG or SC-PCFG outperforms previous PCFG models on unsupervised parsing benchmarks across different languages
- Simple PCFG vs. Neural PCFG: Despite the better scalability of simple PCFGs, we find that under the same number of NT (i.e. 128), SN-PCFG expectedly underperforms N-PCFG

Model	NT	S-F1 (↑)	ppl (↓)
N-PCFG	30	50.8	252.6
C-PCFG	30	55.2	-
TN-PCFG	500	57.7	210.0
Rank PCFG	4500	64.1	168.0
Rank PCFG [†]	4096	$60.1_{\pm 7.6}$	$165.1_{\pm 7.7}$
Rank PCFG [†]	8192	$61.1_{\pm 5.9}$	$171.2_{\pm11.7}$
N-PCFG [†]	128	$56.7_{\pm 3.7}$	$181.1_{\pm 15.3}$
SN-PCFG	128	$51.1_{\pm 4.1}$	$231.7_{\pm 8.1}$
SN-PCFG	4096	$65.1_{\pm 2.1}$	$132.5_{\pm 4.9}$
SN-PCFG	8192	$62.9_{\pm 2.8}$	$134.6_{\pm 9.1}$
SC-PCFG	512	$54.3_{\pm 4.8}$	-
SC-PCFG	2048	$60.6_{\pm 3.6}$	-
PRPN	-	37.4	-
ON	-	47.7	-
DIORA _{+span} constraint	-	61.2	-
S-DIORA	-	57.6	-
Constituency test	-	62.8	-
StructFormer	-	54.0	-
Fast-R2D2	-	57.2	-
Right-Branching	-	39.5	-
Oracle Trees	-	84.3	-

Model	NT Chi		nese Fre		ench Ge		rman
		S-F1(↑)	ppl(↓)	S-F1(↑)	ppl(↓)	S-F1(↑)	ppl(↓)
Left-Branching	-	7.2	-	5.7	-	10.0	
Right-Branching	-	25.5	-	26.4	-	14.07	-
Random Trees	-	15.2	-	16.2	-	13.9	-
kim-2022-revisiting	-	-	-	41.9	-	47.3	-
li-lu-2023-contextual	-	-	-	48.7	-	40.8	-
N-PCFG	30	$26.3_{\pm 2.5}$		$45.0_{\pm 2.0}$		$42.3_{\pm 1.6}$	
C-PCFG	30	$38.7_{\pm 6.6}$	-	$45.0_{\pm 1.1}$	-	$\textbf{43.5}_{\pm 1.2}$	-
TN-PCFG	250	$39.2_{\pm 5.0}$		$39.1_{\pm 4.1}$		$47.1_{\pm 1.7}$	
Rank PCFG	4096	$31.00{\scriptstyle\pm8.9}$	$409.4_{\pm 29.5}$	$31.2_{\pm 9.3}$	$355.8_{\pm 13.7}$	$35.6_{\pm 9.1}$	$215.3_{\pm 57.1}$
Rank PCFG	8192	$32.4_{\pm 8.2}$	$372.6_{\pm 31.4}$	$32.9_{\pm 10.6}$	$332.2_{\pm 60.8}$	$38.9_{\pm 9.6}$	$190.5_{\pm 65.9}$
SN-PCFG	4096	$39.9_{\pm 6.3}$	$328.3_{\pm 62.1}$	$38.0_{\pm 3.1}$	$379.7_{\pm 5.2}$	$46.7_{\pm 4.9}$	$157.8_{\pm 65.6}$
SN-PCFG	8192	$41.2_{\pm 3.5}$	288.2 _{±11.7}	$43.3_{\pm 9.9}$	259.9 ±70.2	$46.9_{\pm 5.1}$	$159.5_{\pm 77.2}$
SC-PCFG	512	$38.4_{\pm 7.4}$	-	$47.9_{\pm 1.2}$	-	$47.7_{\pm 1.0}$	-
SC-PCFG	2048	42.9 $_{\pm 2.9}$	-	$\textbf{49.9}_{\pm 1.7}$	-	$\textbf{49.1}_{\pm 1.0}$	-